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Abstract
Heart rate variability biofeedback (HRVB) is an efficacious treatment for depres-
sion and anxiety. However, translation to digital mental health interventions 
(DMHI) requires computing and providing real-time HRVB metrics in a per-
sonalized and user-friendly fashion. To address these gaps, this study validates 
a real-time HRVB feedback algorithm and characterizes the association of the 
main algorithmic summary metric—HRVB amplitude—with demographic, psy-
chological, and health factors. We analyzed HRVB data from 5158 participants 
in a therapist-supported DMHI incorporating slow-paced breathing to treat de-
pression or anxiety symptoms. A real-time feedback metric of HRVB amplitude 
and a gold-standard research metric of low-frequency (LF) power were computed 
for each session and then averaged within-participants over 2 weeks. We provide 
HRVB amplitude values, stratified by age and gender, and we characterize the 
multivariate associations of HRVB amplitude with demographic, psychologi-
cal, and health factors. Real-time HRVB amplitude correlated strongly (r = .93, 
p < .001) with the LF power around the respiratory frequency (~0.1 Hz). Age was 
associated with a significant decline in HRVB (β = −0.46, p < .001), which was 
steeper among men than women, adjusting for demographic, psychological, and 
health factors. Resting high- and low-frequency power, body mass index, hyper-
tension, Asian race, depression symptoms, and trauma history were significantly 
associated with HRVB amplitude in multivariate analyses (p's < .01). Real-time 
HRVB amplitude correlates highly with a research gold-standard spectral metric, 
enabling automated biofeedback delivery as a potential treatment component of 
DMHIs. Moreover, we identify demographic, psychological, and health factors 
relevant to building an equitable, accurate, and personalized biofeedback user 
experience.
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1   |   INTRODUCTION

Approximately 40% of US adults in 2021 reported symp-
toms of depression and anxiety that significantly impact 
daily functioning and quality of life (Vahratian et al., 2021) 
Heart rate variability biofeedback (HRVB) is a promising, 
evidence-based adjunctive intervention that can make a 
clinically significant contribution to treating these mental 
health symptoms (Alayan et al., 2018; Burlacu et al., 2021; 
Costa Vital et  al.,  2021; Fournié et  al.,  2021; Goessl 
et al., 2017; Lehrer et al., 2020; Pizzoli et al., 2021). This 
study enables digital HRVB with machine-learning-based 
biofeedback by validating a real-time algorithm and by 
characterizing individual differences relevant to improv-
ing the equity, accuracy, and personalization of digital 
HRVB.

Higher HRV is considered a marker of psychobiologi-
cal resilience that predicts lower morbidity and mortality 
(Fang et al., 2020; Shaffer & Meehan, 2020). Breathing 
at a slow pace close to 0.1 Hz, or six breaths per minute, 
has been shown to maximize respiration-induced HRV 
(Cooke et al., 1998). Moreover, brain networks involved 
in regulating emotions overlap with those involved 
in regulating HRV (Mather & Thayer,  2018; Thayer 
et al., 2012). Indeed, a recent clinical trial demonstrated 
that 5 weeks of HRVB (or slow-paced breathing with 
biofeedback) improved functional connectivity within 
brain networks involved in the generation and regula-
tion of emotions (Nashiro et al., 2022). Therefore, HRVB 
may directly target cardiac autonomic training and emo-
tion regulation, thereby complementing standard thera-
peutic approaches.

To automate user feedback during an HRVB session, 
one must identify what metric defines success or informs 
the user whether they have generated large HRV oscilla-
tions at any given moment. In research studies, success-
ful HRVB practice is often quantified using the spectral 
power in the low-frequency (LF) domain (0.04–0.15 Hz) 
(Camm et al., 1996), where higher spectral values reflect 
higher amplitude HRV oscillations (Lehrer et al., 2020). 
However, this computation requires at least 2 min of 
data and yields edge effects, both of which preclude 
providing accurate feedback in real time. Moreover, the 
standard LF range of 0.04–0.15 Hz is too broad to prop-
erly guide the user experience. Specifically, users are 
typically instructed to match the pace of their breath to 
a pacer set to 0.1 Hz; hence, using the full LF range, a 
user breathing only half as fast as the prescribed pace 
(e.g., 0.05 Hz instead 0.1 Hz) would receive feedback 
that their performance was successful, when in fact they 
were not breathing in time with the pacer. When users 
observe that the algorithm fails to detect whether they 
are correctly following the directions, this undermines 

their trust in the treatment program. Fortunately, it is 
not necessary to utilize the full LF range for this algo-
rithm because slow-paced breathing recruits the ma-
jority of the power in the LF range into a narrow band 
around the breathing frequency.

In frequency-domain analyses, a complex signal 
may be mathematically represented as the summation 
of sine waves distributed across a frequency spectrum 
(Downey, 2014). Thus, LF may be approximated around 
the breathing frequency by fitting a bounded, nonlin-
ear curve-fitting algorithm (e.g., Levenberg–Marquardt 
algorithm) (Brown & Dennis,  1971; Gavin,  2022; Lu 
et al., 2019) using a sinusoidal function with bounds of 
.08–.12 Hz around the frequency parameter. The fitted 
model would yield a sine wave amplitude parameter 
(i.e., half the peak-to-trough amplitude), which should 
be highly correlated with spectral power computed 
within the same frequency range. This may enable a 
mobile application (app) to run a real-time algorithm as 
part of a digital intervention and feed back the HRVB 
amplitude metric using much shorter windows of data 
(e.g., 30 s).

A second major challenge is how to feed back the 
HRVB amplitude in a manner that is easily interpre-
table to the user. User experience research shows that 
complex health information is best delivered using a 
simple color-coded score with short-word descriptors 
(Brockman et  al.,  2021). With a real-time algorithm, a 
digital intervention could apply a threshold to a roll-
ing window calculation of HRVB amplitude within an 
app. For example, the app could dynamically change the 
color of the breathing pacer, thereby helping the patient 
learn when they are performing HRVB correctly and op-
timizing their training.

If the thresholds are not personalized, however, then 
real-time algorithms could result in biases against indi-
viduals with lower HRV due to age, gender, and mental 
or physical health factors. For example, because resting 
HRV generally declines with age (Jandackova et al., 2016; 
Natarajan et al., 2020), applying a one-size-fits-all thresh-
old might prevent older users from achieving positive 
feedback, even when they may be doing HRVB effec-
tively. Consequently, this may lead to reduced patient 
engagement or effectiveness among certain populations 
(Lambert et al., 2018; Schilling et al., 2021). Nevertheless, 
it is not yet known whether HRVB amplitude also declines 
with age, as do resting HRV metrics.

Gender also impacts the trajectory of age-related de-
cline in HRV. In resting HRV assessments, women exhibit 
less power in the LF range and more in the HF range com-
pared to men (Koenig & Thayer, 2016). However, men's LF 
also declines faster than women's with age (Jandackova 
et  al.,  2016; Stein et  al.,  1997). Moreover, slow-paced 
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breathing with biofeedback evokes complex interactions 
across several bodily systems, which differ from a resting 
state. Hence, to ensure an equitable, accurate, and person-
alized user experience, real-world studies are needed to 
establish whether HRVB amplitude is impacted by demo-
graphic, psychological, and health factors, including gen-
der, race and ethnicity, mental health symptom severity, 
cardiometabolic conditions, and other medical comorbid-
ities (Aschbacher et  al.,  2017; Berg et  al.,  2021; Fournié 
et al., 2021; Kemp et al., 2010; Mason et al., 2019).

To address this gap, this study developed age- and 
gender-stratified estimates for real-time HRVB amplitude 
among a large sample of patients (N = 5158) who partici-
pated in a digital mental health intervention (DMHI) in-
corporating HRVB to treat symptoms of depression and 
anxiety (Economides et al., 2020). The primary hypothe-
sis was that greater age would be associated with lower 
HRV amplitude scores while doing biofeedback training, 
even when adjusting for other demographic, psycho-
logical, and health factors (Almeida-Santos et  al.,  2016; 
Monahan,  2007; Reardon & Malik,  1996; Umetani 
et al., 1998). The secondary hypothesis was that age would 
interact with gender to predict HRV amplitude during bio-
feedback, such that younger men would have higher am-
plitudes than younger women, but men would also show 
greater age-associated decline (Abhishekh et  al.,  2013; 
Jandackova et  al.,  2016; Koenig & Thayer,  2016; O'Neal 
et  al.,  2016; Shaffer & Ginsberg,  2017). We additionally 
explored the extent to which other demographic, psycho-
logical, and health factors were associated with HRV am-
plitude during biofeedback.

2   |   METHODS

2.1  |  Study sample

The sample included 5158 people who participated in a 
DMHI called the Meru Health Program (MHP) between 
August 1, 2020 and August 1, 2022. Referral to the MHP 
was through healthcare providers and employee assis-
tance programs. Inclusion criteria determined during a 
clinical intake included: (1) having at least mild levels of 
depression, anxiety, or burnout; (2) owning a smartphone; 
(3) no active substance use disorder; (4) no severe active 
suicidal ideation with a specific plan or severe active self-
harm; (5) no history of psychosis or mania; and (6) being 
18 years of age or older. Additional inclusion criteria for 
this study were participation in at least one HRVB ses-
sion with a minimum recording length of 4 min, which 
exceeds the recommended minimum length of 2 min per 
published guidelines (Shaffer & Ginsberg, 2017).

Patients consented to participate and have their col-
lected and de-identified data used for research purposes 
when accepting the MHP privacy practices. Data were 
stored in Health Insurance Portability and Accountability 
Act-compliant electronic medical records that include 
protected health information. All data were encrypted in 
transit and at rest. Institutional review board exemption 
for this study was obtained from the Pearl Institutional 
Review Board (21-MERU-114). The authors assert that 
all procedures contributing to this work comply with the 
ethical standards of the relevant national and institutional 
committees on human experimentation and with the 
Helsinki Declaration of 1975, as revised in 2008.

2.2  |  HRVB module

In the second week of the program, participants begin 
self-administering HRVB via the MHP app using a 
HeartMath® Bluetooth photoplethysmography (PPG) sen-
sor, which was sent to each participant prior to starting 
the intervention. The sensor was medical grade with real-
time autogain control, which collected PPG data from the 
ear lobe with a sampling rate of 125 Hz and transmitted 
the raw interpulse intervals. PPG measured at the ear lobe 
has previously been shown to provide accurate interpulse 
intervals for HRV measurement (Lu et al., 2009).

First, each participant participated in a 3-min resting 
assessment in a supine position, from which we computed 
resting HRV metrics. During the following log-in, each 
participant received a brief written introduction to HRVB 
and slow-paced breathing, including how to use the sen-
sor, and was then asked to complete introductory content 
via the MHP app, during which they could set a daily time 
as a reminder to engage with the practice. All participants 
were assigned to a pace of six breaths per minute, which 
appears to optimize respiratory-induced HRVB oscilla-
tions for most individuals (Vaschillo et al., 2002). During 
each HRVB session, participants were guided by a visual 
pacer that expanded during inhalation and contracted 
during exhalation (see Video  S1). Participants received 
additional auditory cues in the form of recorded breath 
sounds that matched the rate of the visual pacer. At the 
end of the practice, participants were shown a summary 
feedback screen detailing the session duration and time 
spent in low versus high levels of respiratory-induced 
modulation of HRV (i.e., termed “resonance” in the app, 
with low resonance defined as falling below a given HRVB 
amplitude cutoff). Content video instructions featured 
a concise scientific explanation of the relationship be-
tween heart rate, breathing, and the body's ability to self-
regulate. Participants who struggled with lightheadedness 
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were given a video about how to avoid hyperventilation 
(called “over-breathing” in the app).

2.3  |  Intervention

The MHP incorporates self-guided modules with interac-
tions with a dedicated, licensed clinical therapist through 
a smartphone app. The MHP lasts 12 weeks and contains 
evidence-based practices derived from cognitive behav-
ioral therapy, behavioral activation therapy, mindful-
ness, sleep therapy, nutritional psychiatry, and HRVB 
(Economides et  al.,  2019, 2020). Participant HRVB ses-
sions were done through the app, with guidance from 
the real-time algorithm controlling the pacer, rather than 
from a live clinician.

2.4  |  Demographics and psychological  
factors

Demographic variables included self-declared gender 
(25% male, 73% female, 2% gender expansive) and age 
(mean = 40 years, range = 18–76 years). Psychological fac-
tors included chronicity of major depressive episodes 
(MDE; none, single, recurrent) and the presence of any 
lifetime traumatic events (yes/no). Depression and anxi-
ety symptoms were measured on a biweekly basis with the 
Patient Health Questionnaire-9 (PHQ-9) and Generalized 
Anxiety Disorder-7 Scale (GAD-7), respectively (Table 1). 
Both questionnaires have excellent psychometric prop-
erties and clinical utility (Kroenke et  al.,  2001; Löwe 
et al., 2004, 2008; Spitzer et al., 2006).

2.5  |  Health factors

Participants were invited to self-report their weight and 
height, from which body mass index (BMI) was com-
puted (mean = 28, range = 16–68), as well as physician-
diagnosed medical conditions including heart disease, 
hypertension, diabetes (type I, II, or gestational) or predia-
betes, high cholesterol, autoimmune disease, respiratory 
conditions (e.g., asthma), cancer or malignancy, or liver 
disease (see Table 1). The average resting heart rate was 
72 (range = 45–116).

2.6  |  Algorithm for real-time HRVB  
amplitude

A detailed description of the real-time HRVB al-
gorithm, developed by the first author and used to 

empirically derive HRVB amplitude, is provided in the 
Supplementary Methods section. Supplementary code 
resources can be found in online repositories (https://​
github.​com/​meruh​ealth/​​meru-​publi​catio​ns/​tree/​main/​
hrvb_​toward_​preci​sion_​care). Using Kubios as a guide-
line, data cleaning was automated using real-time 

T A B L E  1   Descriptive statistics of patient population (N = 5158).

Characteristics n (%)

Age, mean (std) 40.057 (10.927)

Gender

Male 1288 (24.971%)

Female 3775 (73.187%)

Expansive 95 (1.842%)

Race

White 3620 (70.182%)

American Indian 30 (0.582%)

Asian 609 (11.807%)

Black 196 (3.800%)

Hispanic 294 (5.700%)

Other 310 (6.010%)

Declined 99 (1.919%)

Major Depressive Episode Chronicity

None 2060 (39.938%)

First 1048 (20.318%)

Recurrent 2050 (39.744%)

Trauma history

No 2687 (52.094%)

Yes 2471 (47.906%)

Psychological symptoms, mean (std)

Baseline depression (PHQ-9) 10.986 (5.754)

Baseline anxiety (GAD-7) 11.102 (4.759)

Physiological factors, mean (std)

Resting heart rate 71.856 (11.518)

Resting high-frequency power (ln) 5.522 (1.129)

Resting low-frequency power (ln) 5.874 (1.142)

Health factors*

Body mass index, mean (std) 27.549 (6.845)

Hypertension 642 (12.447%)

Heart disease 123 (2.385%)

Diabetes or prediabetes 427 (8.278%)

High cholesterol 440 (8.530%)

Cancer or malignancy 234 (4.537%)

Chronic pain 182 (3.528%)

Autoimmune disease 504 (9.771%)

Respiratory conditions 722 (13.998%)

Liver disease 105 (2.036%)

*Participants can have more than one condition.
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filtering algorithms to interpolate missing data and re-
move global outliers, ectopic beats (using a modified 
Kamanth filter), and movement artifacts (Tarvainen 
et  al.,  2014). Next, we applied a rolling window appli-
cation of a time-bounded Levenberg–Marquardt (LM) 
algorithm for nonlinear curve-fitting (Aschbacher 
et  al.,  2023; Brown & Dennis,  1971; Gavin,  2022; Lu 
et al., 2019), which utilized a sine function to fit four pa-
rameters: amplitude, omega (angular frequency), phase, 
and the mean heart rate.

2.7  |  HRVB amplitude and success 
rate metrics

The final HRVB amplitude score for each participant 
session was computed as the median amplitude pa-
rameter over all session windows. Finally, we aver-
aged each participant's HRVB amplitude metrics over 
their first 2 weeks of practice to derive a more trait-like 
index reflecting individual characteristics such as age 
and gender while minimizing circadian and state-like 
variation.

Furthermore, to mathematically simulate whether 
the pacer would deliver an equitable user experience re-
gardless of age, we computed the percentage of time that 
a participant's feedback would indicate successful task 
performance (i.e., high-amplitude HRV oscillations), by 
quantifying whether the amplitude parameters exceeded 
a threshold of 2.0 for all session windows. Henceforth, we 
refer to this metric as the HRVB success rate. A threshold 
value of 2.0 was chosen because it was already being used 
in the app at the study start.

2.8  |  HRV frequency-domain metrics

HRV frequency-domain metrics were computed using 
a Lomb–Scargle analysis applied retrospectively to 
the entire session's cleaned inter-beat interval series 
(Delane et al., 2016), followed by natural log transforma-
tion. For resting assessments, we used the standard HF 
(0.15–0.40 Hz) and LF domains (0.04–0.15 Hz) (Camm 
et al., 1996). However, for HRVB session analysis, we used 
the same subset of the frequency range to measure LF dur-
ing HRV biofeedback as was used in the real-time algo-
rithm, henceforth referred to as HRVB LF (0.08–0.12 Hz). 
This was done to (1) enable a direct comparison of HRVB 
amplitude with the LF metric, by ensuring they were both 
measured across the same frequency band and (2) ensure 
that the frequency band appropriately reflected the pre-
scribed breathing pace.

2.9  |  Statistical analyses

2.9.1  |  Validation of HRVB amplitude

Pearson correlations were computed among the HRV met-
rics to test whether HRVB amplitude would exhibit strong 
convergent validity by correlating highly (>0.80) with 
HRVB LF around the breathing frequency (0.08–0.12 Hz; 
Figure 2), and strong discriminant validity by exhibiting 
small to moderate correlations (0.20–0.35) with resting 
HRV (Table 2). We focused on resting HF as the best indi-
cator for discriminant validity in this context (Figure S5), 
because during normal breathing at rest, the respiration-
associated changes in HRV will contribute to HF rather 
than LF.

2.9.2  |  Age-stratified HRVB metrics

Values for HRVB amplitude stratified by age were gener-
ated by first classifying age into roughly 5-year bins (but 
grouping individuals 65–80 in one final bin due to smaller 
cell sizes) and computing descriptive statistics. To test the 
bivariate associations of age with various HRV metrics, we 
computed the Pearson correlation table among age and 
HRV metrics: resting heart rate, HF and LF power, LF 
power around the breathing frequency, and HRVB ampli-
tude. For inferential statistical tests, we utilized the natu-
ral log-transformed variables for HRVB amplitude and LF 
power to improve the normality of the distributions.

F I G U R E  2   The association between HRVB amplitude and 
low-frequency power during HRVB. The Pearson correlation 
for this association is r = .93, p < .001, supporting measurement 
and construct validity of this metric, HRVB amplitude during 
biofeedback, computed using a novel algorithm, designed for real-
time use. HRVB amplitude and LF (0.08–0.12 Hz), both measured 
during biofeedback, were natural log-transformed to improve 
normality.
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2.9.3  |  Multivariate associations and 
choice of covariates

To evaluate whether increasing age would remain signifi-
cantly associated with reduced HRVB amplitude, even 
when controlling for a variety of other demographic, psy-
chological, and health factors, we tested a series of three 
nested multivariate linear regression models. All models 
used the natural log-transformed HRVB amplitude score 
as the main outcomes. Each nested model tested a broader 
set of covariates as follows: Model (1) Age, gender, and 
an age-by-gender interaction; Model (2) Variables from 
Model 1 plus race/ethnicity and psychological factors; 
and Model (3) Variables from Model 1 and 2 plus health 
factors and resting HRV metrics. Covariates were cho-
sen based on prior literature regarding factors impacting 
HRV and the ultimate goal of building an equitable algo-
rithm. Model 1 specifically tested the hypothesis that the 
slope of age-associated decline in HRVB amplitude will 
differ among women versus men. We tested this hypoth-
esis by entering the following independent variables into 
a linear regression model: age (continuous), gender (fe-
male, male, expansive), and the interaction between age 
and gender. Models 2 and 3 were conducted separately, in 
anticipation of the fact that health factors used in Model 
3 might attenuate the effects of psychological factors like 
prior history of trauma and MDEs on the outcome, which 
can only be identified with the current nested design.

3   |   RESULTS

3.1  |  Participant characteristics

Table  1 describes the participant characteristics for 
the demographic, psychological, and health factors. 

Figure  S1 illustrates the Lomb–Scargle algorithm across 
the low-frequency (0.04–0.15 Hz) and high-frequency 
(0.15–0.40 Hz) ranges for one representative participant. 
Figure S2 visualizes short rolling windows of data using 
the bounded Levenberg–Marquardt model for a repre-
sentative participant.

3.2  |  Age-stratified HRVB metrics

Figure 1 and Table S1 provide the data for the mean HRVB 
amplitude and 95% confidence interval for every age cat-
egory, binned in 5-year intervals, except for the first and 
last bins. For comparison, Figure  S3 also visualizes the 
mean HRVB LF power (0.08–0.12 Hz ln) by age category. 
The HRVB success rate (i.e., percentage of time a user 
was informed that their performance was successful in 
increasing HRV during a session) declined steadily from 
84% to 52% when comparing participants aged 40–45 years 
to those aged 65–80 years (Figure S4).

3.3  |  Associations of age with HRV

Increasing age was significantly associated with de-
creases in all HRV metrics in Pearson correlation analy-
ses (Table  2; r's: −.23 to −.48, all p's < .001), including 
those taken during both resting assessment HRVB 
sessions.

3.4  |  Convergent and divergent 
validity of HRVB amplitude

As hypothesized, HRVB amplitude was highly correlated 
(r = .93, p < .001) with HRVB LF (0.08–0.12 Hz; Figure 2), 

T A B L E  2   Pearson correlations among age and HRV metrics at rest and during biofeedback.

N = 5158 Age
HRVB amplitude 
(ln)

HRVB LF (.08–
.12 Hz ln)

Resting heart 
rate

Resting LF 
(ln)

Resting 
HF (ln)

Age – −0.479 −0.429 −0.065 −0.227 −0.300

HRVB Amplitude (ln) – – 0.926 −0.046 0.329 0.389

HRVB LF (.08–.12 Hz ln) – – −0.264 0.392 0.454

Resting heart rate – – – – −0.306 −0.356

Resting HF (ln) – – – – – 0.764

Resting LF (ln) – – – – – –

Note: All p-values <.001 due to large sample size; hence, we focus the interpretation on the r-values as indications of effect size. HRVB amplitude reflects the 
median amplitude of the fitted sinusoidal model across all rolling windows, which is half the peak-to-trough height, per the classic definition of sine wave 
parameters (see supplement for details). HRVB LF reflects the low-frequency power extracted in the frequency band around the prescribed breathing pace of 
six breaths per minute (0.08–0.12). Resting high-frequency (HF) and low-frequency (LF) power were calculated using standard frequency band definitions (see 
methods).
Abbreviation: HRVB, Heart rate variability biofeedback.
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demonstrating high convergent validity. Moreover, HRV 
amplitude during biofeedback exhibited small to moderate 
correlations (r's: .33–.39, p < .001) with HRV metrics during 
the resting state (Table 2; Figure S5), thereby demonstrat-
ing that HRVB amplitude, calculated with our real-time 
algorithm, is a unique metric independent of resting HRV.

3.5  |  Model 1: Age and gender

Our primary hypothesis that age and gender would 
exhibit a significant interaction predicting HRVB 

amplitude was supported (Model 1, Table  3; p < .001), 
with an adjusted R2 of 23%. As hypothesized, age-
related decline in HRVB amplitude was attenuated (or 
flatter) for participants of female versus male gender. 
Simple effects follow-up analyses in each gender sub-
group revealed that women's HRVB amplitudes de-
cline less steeply with age (β = −0.019, 95% CI = −0.020, 
0.018, p < .001) compared to men's (β = −0.023, 95% 
CI = −0.026, −0.021, p < .001) and the gender expan-
sive subgroup (β = −0.023, 95% CI = −0.029, −0.017, 
p < .001). Estimates stratified by age and gender identity 
may be found in Tables S1–S4.

3.6  |  Model 2: Demographic and 
psychological factors

As hypothesized, age- and gender-associated declines in 
HRVB amplitude remained significant in multivariate 
analyses adjusting for demographic and psychological 
factors (p < .01; Table  3; see methods for covariate se-
lection). Moreover, participants self-reporting their race 
as Asian, other, or “declined to state” exhibited signifi-
cantly lower HRVB amplitude than Whites (p's < .01), 
whereas Blacks and Hispanics did not significantly 
differ from Whites. Interestingly, baseline depression 
symptoms and trauma history were associated with 
significantly lower HRVB amplitude (p's < .01), while 
anxiety symptoms and past MDE severity were not 
(p's > .05). The Pearson correlation between baseline 
depression and anxiety symptoms was r = .55, p < .01. 
Notably, the adjusted R2 for Model 2 was 26%, improving 
only 3% relative to nested Model 1, indicating that self-
reported race and baseline psychological status exerted 
small effects.

3.7  |  Model 3: Full model including 
health status

The final Model 3 confirmed that age remained strongly 
negatively associated with HRVB amplitude (p < .001) 
when additionally adjusting for health factors as well as 
resting HRV LF and HF power. Effect size comparison 
(Figure S6) revealed that age accounted for the most vari-
ance in HRVB amplitude. The adjusted R2 was 34% (+8% 
versus Model 2), with the largest effect sizes after age 
coming from resting HF and BMI (p's ≤ .001), followed 
by resting LF and hypertension (p's < .05), while other 
health factors were non-significant. Having a trauma his-
tory (yes/no) became non-significant after controlling for 
health factors.

F I G U R E  1   The association of age with HRVB amplitude: 
Example waveforms and aggregate data. Example waveforms 
of instant heart rate data for one younger participant (between 
20 and 29) and one older participant (over 65) during HRV 
biofeedback are shown above, with their respective HRVB 
amplitude scores indicated. The bar graph displays the 
association between age categories and the mean HRVB 
amplitude values with standard errors. Supplementary Tables 
provide age-stratified values in the entire sample and for each 
gender subgroup.
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4   |   DISCUSSION

Many studies have shown that HRVB has substantial ben-
efits for mental and physical health (Alayan et al., 2018; 
Burlacu et  al.,  2021; Fournié et  al.,  2021; Lehrer 
et  al.,  2020); however, little evidence exists to guide the 

translation of HRVB from the clinician's office to out-
of-clinic, real-time digital interventions. This is the first 
study to rigorously evaluate the association between a 
real-time HRVB metric—HRVB amplitude—with demo-
graphic, psychological, and health factors. With a cohort 
of over 5000 patients from across the United States who 

Characteristics

Model 1 Model 2 Model 3

Coefficient (SE) Coefficient (SE)
Coefficient 
(SE)

Age −.0228 (.001)** −.0241 (.001)** −.0188 (.001)**

Gender

Male Referent Referent Referent

Female −.1459 (.05)** −.1383 (.049)** −.1009 (.046)*

Gender expansive −.0497 (.044) −.011 (.044) −.0369 (.041)

Age*gender .0034 (.001)** .0033 (.001)** .0025 (.001)*

Race/ethnicity

White – Referent Referent

Black – −.0254 (.029) .0218 (.028)

Hispanic/Latinx – .0151 (.024) .0141 (.023)

Asian – −.1258 (.018)** −.1313 (.017)**

American Indian – −.0767 (.067) −.0914 (.063)

Other – −.1133 (.024)** −.0815 (.022)**

Declined – −.2014 (.041)** −.1639 (.039)**

Psychological Factors

Baseline PHQ-9 – −.0074 (.001)** −.0035 (.001)**

Baseline GAD-7 – −.002 (.001) −.0022 (.001)

Trauma – −.0279 (.012)* −.0204 (.011)

MDE chronicity – −.0042 (.007) .0039 (.006)

Physiological factors

Resting high frequency 
power (ln)

– – .074 (.007)**

Resting low frequency 
power (ln)

– – .0253 (.007)*

Health factors

BMI – – −.0088 (.001)**

Hypertension – – −.0576 (.018)**

Heart disease – – −.0612 (.035)

Diabetes – – −.0289 (.021)

High cholesterol – – .0241 (.02)

Cancer – – .0094 (.026)

Chronic pain – – −.0383 (.03)

Autoimmune disorder – – −.0249 (.017)

Respiratory disease – – .0176 (.015)

Liver disease – – .0057 (.039)

Abbreviations: BMI, body mass index; GAD, Generalized Anxiety Disorder; HRVB, heart rate variability 
biofeedback; MDE, major depressive episode; PHQ, Patient Health Questionnaire; SE, standard error.
*p ≤ .05; **p ≤ .01.

T A B L E  3   Multivariate associations 
between HRVB amplitude (ln) and 
participant characteristics.
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participated in a therapist-supported DMHI, this study 
fills an important gap by providing remote providers and 
participants with the expected range of values for HRVB 
metrics, measured in naturalistic settings and stratified by 
age and gender (Goessl et al., 2017; Pizzoli et al., 2021). 
Furthermore, we demonstrate the need for precision care 
algorithms by showing that without personalization, au-
tomated pacer feedback based on a one-size-fits-all HRVB 
metric may exhibit substantial algorithmic age biases. 
Specifically, this would reduce the percentage of time 
users would receive positive feedback from over 80% to 
nearly 50%, when comparing people in their early 40 or 
younger to people over 65 years of age. In sum, the results 
of this study significantly advance our ability to deliver au-
tomated, equitable, and personalized HRVB interventions 
at scale.

These findings are the first to show an age-related re-
duction of HRV metrics during biofeedback (e.g., oscil-
latory amplitude and LF power) in a large sample, when 
adjusting demographic, physiological, psychological, and 
health factors. Of all factors studied, age exhibited the 
largest independent effect on HRV amplitude during bio-
feedback. This finding is largely consistent with the extant 
literature on resting HRV assessments (Choi et al., 2020; 
Jandackova et al., 2016); however, they are novel in that, 
to our knowledge, there are no published age and gender 
benchmarks of HRVB metrics in large studies or real-
world settings. Hence, the normal aging process appears 
to involve a general decline in cardiac autonomic mod-
ulation (Thayer et  al.,  2021), which affects HRV both at 
rest and during biofeedback. Prior studies including older 
adults have observed age-related attenuation of HRVB 
metrics. Interestingly, this did not preclude clinical bene-
fits or apparently beneficial changes in the brain of similar 
magnitude to those of younger adults (Lehrer et al., 2006; 
Yoo et  al.,  2022). Hence, this spotlights several critical 
clarifications for the field, such as whether HRVB am-
plitude is an important determinant of clinical outcomes 
and whether participants with lower HRVB amplitudes 
may require a higher dose or practice duration to achieve 
similar real-world effectiveness. Alternatively, those with 
lower age-adjusted HRVB amplitudes at baseline may 
show similar (or even greater) benefits from biofeedback 
due to their greater need for intervention to improve auto-
nomic cardiac control.

By gender, male participants exhibited a steeper age-
related decline in HRVB amplitude than female partici-
pants. This finding aligns with two prior studies, which 
showed that LF (but not HF) power from resting HRV 
assessments exhibited a greater age-related decline 
among men than women (Jandackova et al., 2016; Stein 
et al., 1997). Given that HRVB enhances baroreflex sen-
sitivity (BRS; Sakakibara et  al.,  2020), it is noteworthy 

that a prior study also reported less age-related decline 
in BRS among women than men (Laitinen et  al.,  1998). 
Age-associated decline in HRVB metrics was indepen-
dent of age-related declines in resting HRV, which may 
have important mechanistic implications. Resting HF 
power reflects parasympathetic tone, whereas resting 
LF power tends to reflect the influence of the baroreflex. 
However, when participants slow their breathing down, 
these metrics reflect different physiological mechanisms 
associated with resonance breathing. In a resting state, 
natural breathing occurs in the HF range; consequently, 
the influence of respiration HRV is reflected in higher 
resting HF or root mean square of successive differences 
(RMSSD). In contrast, during these biofeedback sessions, 
the breathing rate is intentionally slowed to a pace of six 
breaths per minute, which impacts the LF range (Shaffer 
& Ginsberg, 2017). While some earlier studies have sug-
gested that LF HRV might reflect sympathetic input, re-
cent evidence comparing pharmacological blockade of 
sympathetic versus parasympathetic activity has revealed 
that increases in spectral power at the breathing frequency 
during slow-paced breathing are almost entirely vagally 
mediated (Kromenacker et al., 2018).

Unlike normal breathing at rest, slow-paced breath-
ing evokes complex interactions between multiple 
homeostatic systems, such as respiratory sinus arrhyth-
mia, attentional control, and the baroreflex (Shaffer 
& Meehan,  2020). The baroreflex loop is a feedback-
regulated cardiac-brain control system that regulates 
short-term blood pressure changes (Man et  al.,  2021). 
HRVB actively exercises the baroreflex, thereby improving 
BRS (Lehrer et al., 2003; Sakakibara et al., 2020). Notably, 
the factors associated with reduced HRVB amplitude in 
this study are remarkably similar to those associated with 
lower BRS: older age and poorer cardiometabolic health 
(Ebert et al., 1992; Lehrer et al., 2003; Man et al., 2021). 
Thus, real-time HRVB amplitude may provide a unique 
biomarker of multisystemic resilience lying at the inter-
section of mental health and cardiometabolic disease.

We elected not to provide HRVB amplitude stratifica-
tion by race because such categories are poor proxies for 
biological differences and may better reflect social determi-
nants of health (SDOH) (National Academies of Sciences, 
Engineering, and Medicine et al., 2022). Whereas prior re-
search suggests that racial discrimination among African 
Americans adversely impacts stress physiology and bio-
markers of cardiovascular risk (Aschbacher et  al.,  2016; 
Hill et al., 2017), we did not find lower HRVB amplitudes 
among Blacks and Hispanics compared to Whites; how-
ever, we did find significantly lower HRVB amplitudes 
among Asians and those who reported other race or chose 
not to disclose their race, compared to Whites. While some 
researchers have posited that photoplethysmography 
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might be less accurate among participants with darker 
skin tones, a recent systematic review reported that the 
evidence remains inconclusive, with less than half the 
studies reporting significant skin color-related differences 
in accuracy and the most comprehensive study of the 
full range of skin tones finding no significant difference 
in accuracy across skin tones (Bent et al., 2020; Koerber 
et al., 2022). Taken together, these findings underscore the 
need to further examine how SDOH may impact racial 
and ethnic differences in HRVB and determine strategies 
to improve standard reporting of race and ethnicity during 
clinical intakes (Rowen et al., 2022).

Consistent with prior research, we found that higher 
depression symptoms and the presence of trauma his-
tory were associated with lower HRVB amplitude. 
Surprisingly, anxiety symptoms were not a significant 
predictor, which might reflect comorbidity with depres-
sion or a need for more in-depth anxiety assessment. 
While the standardized effect sizes for these psycholog-
ical factors were small in the final model (Model 3), the 
notable decrease in the effect sizes for depression and 
trauma from Model 2 to Model 3 suggests that much of 
their effects are mediated via resting HF power and car-
diometabolic health.

Several limitations are acknowledged. Most partic-
ipants of the investigated DMHI were employed and 
therefore able to cover program costs through health 
insurance, limiting the generalizability with the general 
US adult population. The decline of HRVB amplitude 
with age might conceivably be even steeper in the gen-
eral population, given that the older adults in this study 
were more likely to be employed than retired. These par-
ticipants may have had higher baseline levels of anxiety 
and depression than the population at large; neverthe-
less, psychological factors had small relationships with 
HRVB amplitude (Figure S6), supporting the generaliz-
ability of our age-stratified metrics. This study also did 
not collect data on psychotropic or cardiovascular med-
ications, precluding our ability to adjust for additional 
factors that may have impacted HRVB amplitude. These 
limitations to external validity are offset by the high 
ecological validity and clinical significance of our main 
study findings.

This study examined differences in HRVB metrics 
using measures of self-declared gender identity rather 
than biological sex. While this may limit inferences about 
HRVB by sex-associated hormones, using gender identity 
helps promote diversity and inclusion in DMHIs. While it 
is possible that the effect sizes in this study may be slightly 
attenuated compared to highly controlled experimental 
studies, these data demonstrate that HRVB metrics are 
robust to guide and personalize the patient's biofeedback 
experience in real time. Moreover, this novel HRVB metric 

exhibited strong convergent validity with the research 
standard metric: LF power.

5   |   CONCLUSION

This study's data provides foundational information for 
incorporating digital HRVB into a DHMI as an adjunctive 
mind–body treatment component. To automate biofeed-
back, real-time algorithms are needed that help the end 
users or patient populations optimize cardiac autonomic 
training sessions without a clinician present. Although 
people expect to see their app data, they also disengage 
when they do not perceive the metrics as actionable and 
easily interpretable (Reading et al., 2018). Raw numbers 
and waveforms generated during biofeedback have little 
inherent meaning to the typical user. As such, evidence-
based user experience recommends that an app translate a 
score into simple color-coded categories to delineate a low 
versus a high score (Lu et al., 2019). However, categoriza-
tion without personalization risks algorithmic inequity. 
This study's findings therefore provide the foundational 
knowledge to build a precision HRVB algorithm at scale, 
ensuring a more equitable experience for patients re-
gardless of age, gender, race/ethnicity, and health status, 
which directly aligns with the US government's Blueprint 
for an AI Bill of Rights (White House, 2022).

Moreover, participants in a DMHI expect their ther-
apists to be knowledgeable about the range of expected 
values for real-time HRVB metrics and the factors that in-
fluence these metrics, which currently constitutes a gap in 
the literature. While additional work is needed to develop 
normative values for comparison of an individual's health 
status to a larger demographically matched population, 
these benchmarks provide needed empirical data that em-
powers consumers of digital HRVB products to have realis-
tic expectations. Finally, now that this study has validated 
a real-time HRVB amplitude metric, outcomes studies are 
needed to test the real-world effectiveness of HRVB ampli-
tude as a potential intervention mechanism for improving 
within-user progress and clinical improvements over time 
during DHMIs and other digital interventions. With the 
emergence of slow-paced breathing as a digital therapeu-
tic, this study's findings demonstrate a clear need to en-
sure that algorithm-based biofeedback utilizes a precision 
care approach. Similarly, remote clinician feedback can 
also use these HRVB ranges to help participants interpret 
their scores and track their progress. Lastly, these findings 
illustrate that without a precision care algorithm, digital 
HRVB will be age-biased, thereby risking lower real-world 
effectiveness. These findings help pave the way for more 
robust and equitable HRVB metrics as a core component 
of translational digital medicine and precision psychiatry.
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